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S1. Full-wave electromagnetic simulations of micro-ribbon absorption

The graphene micro-ribbon absorption in our experiment can be calculated using full-wave
electromagnetic simulations (FDTD solutions, Lumerical Inc.). Our simulated structure consists
of the waveguide (Perfect electric conductor), the graphene micro-ribbon, hBN (ex, = €y, =
4.8,€,, = 4.4), and the SiO; substrate (¢ = 3.6) shown in Fig. S1. A mode source is used to
excite the terahertz wave in the waveguide, and the transmission is collected by a frequency
domain monitor. We also simulate the terahertz transmission without graphene and use the result
as a reference to obtain the micro-ribbon absorption.
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Fig. S1 | Graphene micro-ribbon modeled in the full-wave electromagnetic simulations.
In the simulations, we treat graphene as a two dimensional surface with local conductivity!
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Here D. and Dr are the Drude weights of the zero and finite momentum modes, respectively.
Tee ! and 1477 are the electron and disorder scattering rates given by?
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Here o is a dimensionless constant, £(3) = 1.202, 1y, is the impurity density, and € is the
effective dielectric constant of the medium. We use a = 0.2 according to Ref. 1, and assume that
Nimp = 2 X 10°cm™2 and € = 4 for graphene encapsulated in hBN. The Drude weight of the

finite momentum mode is
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where ne is the charge density, Vris the Fermi velocity, and Wis the enthalpy density:
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Here u is the chemical potential determined by the charge density and temperature, and kg is the
Boltzmann constant. The Drude weight of the zero-momentum mode is D; = Dy, — D, where
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is the total Drude weight of graphene.

To compare the simulation results with the experimental observations, we convert the graphene
charge density in the simulation to gate voltage using the parallel-plate capacitor model. The
capacitance per unit area is C = €y€ppy/d, where g5y = 3.76 and d = 90 nm is the hBN
thickness determined by the atomic force microscope (AFM) image (Fig. S2). The gate
voltage Vj; is obtained using n = C X (Vg — Veonp), Where Voyp = —0.1 V is the experimentally
determined gate voltage of the charge neutrality point.
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Fig. S2 | Topography of the micro-ribbon device. (a) 2D plot of the sample edge area. (b) Line
cut across the spacer hBN edge indicated by red line in a.



S2. Hydrodynamic plasmons in graphene micro-ribbon near charge neutrality
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Fig. S3 | Line cuts of the absorption spectra at selected carrier densities from Fig. 2a-d and

g-j in the manuscript.

S3. Graphene micro-ribbon absorption in a second device
We studied the THz absorption of graphene micro-ribbon in a second device of similar design.
The bipolar plasmon shows similar temperature dependence on the electron temperature, and the

demon response becomes clear at high enough electron temperature.
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Fig. S4 | Graphene micro-ribbon absorption spectra in a second device. Measured graphene
micro-ribbon absorption spectra at (a) 12.5 ns, (b) 20 ps, (c) 15 ps, and (d) 10 ps after the pump

pulse. (e) Dispersion of hydrodynamic bipolar plasmons extracted from (a)-(d).
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Fig. S5 | Demon mode in graphene micro-ribbon near charge neutrality. Measured graphene
micro-ribbon absorption spectra at 10 ps after the pump pulse. The color bar is scaled for better
visualization of the low-frequency feature.



S4. Transport measurement of the graphene device for demon propagation
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Fig. S6 | Transport measurement of the graphene device in Fig. 4 and 5 in the manuscript.
The charge neutrality point is at Vgaee 1 =-0.06 V.
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